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DYNAMICAL MODEL AND EIGENVALUES
OF THE TURBOCHARGER

Vladimı́r Zeman, Zdeněk Hlaváč*

The paper deals with derivation of the dynamical model of the turbochargers with
rotor supported on the two floating ring bearings. The model respects the bearing
forces acting upon the journals and floating bearing rings by means of inner and outer
oil-films. The gyroscopic effects, external and internal damping of the flexible rotor
shaft and the rigid turbine and compressor wheels are respected. The modal analysis
and the Campbell diagram is used in the turbocharger linearized model to find the
critical speeds.
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1. Introduction

The automotive turbochargers work at very high rotor speeds. Therefore the tur-
bocharger vibrations caused by the rotor unbalance is fundamental phenomenon influencing
a turbocharger operation. Consider the very high-speed automotive turbocharger [6] in-
cluding the flexible rotor shaft (R), rigid turbine (T) and compressor (C) wheels and two
cylindrical floating ring bearings (Ba, Bb) displayed in Fig. 1. The lateral-bending behaviour
of the isotropic flexible rotor shaft with fixed rigid disks supported on non-isotropic bea-
rings can be modelled by 1-D approach using the finite element method in a fixed coordinate
system [4], [3], [7]. The forces transmitted by oil-film bearings can be described for small dis-
placements from static equilibrium position by linearized stiffness and damping matrices
depending on the angular rotor velocity ω. Other external and internal damping effects are
neglected or are respected approximately. Mostly external vs. internal damping was studied
on the fundamental model with rotor mass concentrated in the disk without [2], [4] or with

Fig.1: Computational model of the turbocharger rotor
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gyroscopic effects [5]. The aim of this article is to present a generally accepted methodol-
ogy for modelling of the turbocharger rotor supported on two flexible non-isotropic oil-film
floating ring bearings respecting two separable oil-films of both bearings and an external
and internal rotor damping.

Fig.2: Prismatic shaft finite element

2. Discretization of the rotor shaft

The finite element method (FEM) is applied for a discretization of the flexible rotor shaft
with rigid disks. The motion equations can be written in the space of general coordinates

qR = [ . . . , vi, wi, ϑi, ψi, . . . ]T , (1)

where vi, wi are lateral and ϑi, ψi angular shaft displacements in the nodal point i in the
inertial coordinate system X,Y, Z (Fig. 2). The mass M(e), gyroscopic ωG(e) and stiffness
K(e) matrices of the undamped prismatic shaft finite element (FE) between two adjacent
nodal points i and i+ 1 can be derived using Lagrange’s approach from the identity
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where shaft FE displacements in the inertial coordinate system are arranged into vector

q(e)
YZ = [vi, ψi, vi+1, ψi+1, wi, ϑi, wi+1, ϑi+1]T . (3)

The FE matrices have structure [1]
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where

IΦ =

l∫
0

ΦT(x)Φ(x) dx , IΦ′ =

l∫
0

Φ′T(x)Φ′(x) dx , IΦ′′ =

l∫
0

Φ′′T(x)Φ′′(x) dx ,

Φ(x) = [1, x, x2, x3] , S1,2 =

⎡
⎢⎣

1 0 0 0
0 ±1 0 0
1 l l2 l3

0 ±1 ±2 l ±3 l2

⎤
⎥⎦ , sign + for S1 , sign − for S2

and symbol −T designates a matrix inversion of the transposed matrix (S−T
i = (ST

i )−1,
i = 1, 2). Every shaft element of length l is determined by mass density ρ, cross-section area
A, second moment of cross-section area J and Young’s modulus E.

External damping forces, acting on the shaft FE, depend on the lateral absolute velocity.
The Rayleigh dissipation function in the inertial coordinate system X,Y, Z is expressed as

R
(e)
E =

1
2

l∫
0

[
bEY v̇

2(x, t) + bEZ ẇ
2(x, t)

]
dx , (6)

where bEY and bEZ [kg m−1s−1] are coefficients of viscous damping per unit length of the shaft
FE. Its lateral deformations along the shaft FE are approximated by polynomial function
in the form

v(x, t) = Φ(x)S−1
1 [vi, ψi, vi+1, ψi+1]T , w(x, t) = Φ(x)S−1

2 [wi, ϑi, wi+1, ϑi+1]T . (7)

The external damping matrix B(e)
E results from identity

∂R
(e)
E

∂q̇(e)
YZ

= B(e)
E q̇(e)

YZ , B(e)
E =

[
bEY S−T

1 IΦ S−1
1 0

0 bEZ S−T
2 IΦ S−1

2

]
. (8)

The normal stress σI generated by internal damping forces in axial direction can by
expressed as proportional to longitudinal strain velocity [2] in the form σI = bIE ε̇x, where
bI [s] is coefficient of viscous internal damping and εx is longitudinal unit deformation. The
power of the elementary damping force transmitted by surface element dA of cross-section
is σI dA ε̇x dx, where ε̇x dx is strain rate. The corresponding Rayleigh dissipation function
in rotating coordinate system x, y, z (x ≡ X) is expressed as

R
(e)
I =

1
2

l∫
0

∫
A

bIE ε̇
2
x dAdx . (9)

Providing small angular flexural cross-section displacements longitudinal unit deformation
in arbitrary point (η, ζ) of shaft cross-section is

εx = −η ∂
2vr
∂x2

− ζ
∂2wr

∂x2
. (10)
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The lateral shaft FE deformations vr, wr in the rotating coordinate frame x, y, z can be
approximated in the similar form to (7). The internal damping matrix B(e)

I results from
identity

∂R
(e)
I

∂q̇yz
= B(e)

I q̇(e)
yz , (11)

where shaft FE displacements in rotating coordinate system are arranged into vector

q(e)
yz = [vi,r, ψi,r, vi+1,r, ψi+1,r, wi,r , ϑi,r, wi+1,r, ϑi+1,r]T . (12)

According to (9) up to (12) we get internal damping matrix in the rotating coordinate system

B(e)
I = bIE J

[
S−T

1 IΦ′′ S−1
1 0

0 S−T
2 IΦ′′ S−1

2

]
. (13)

We use the relations

q(e)
yz = T(t)q(e)

YZ , T(t) =
[

E cosωt D sinωt
−D sinωt E cosωt

]
, D = diag[1,−1, 1,−1] (14)

between the displacement vectors of shaft FE nodal points in the rotating x, y, z and the
inertial X,Y, Z coordinate systems. Mathematical model of the shaft FE bending vibration
according to (2), (8) and after transformation of the internal damping force vector (f (e)

I )YZ =
= −B(e)

I q̇(e)
yz into the inertia coordinate system, has the form

M(e) q̈(e)
YZ + (B(e)

E + B(e)
I + ωG(e)) q̇(e)

YZ + (K(e) + ωC(e))q(e)
YZ = 0 , (15)

where so-called circulatory matrix

ωC(e) = ω bIE J

[
0 S−T

1 IΦ′′ S−1
1 D

−DS−T
1 IΦ′′ S−1

1 0

]
, (16)

for constant angular rotor velocity ω is in time the constant skew symmetric matrix.

3. Equations of rotor motion

The motion equations of the automotive turbocharger, including the rotor shaft, tur-
bine wheel, compressor wheel, seal and thrust rings and two rotating floating ring bearings
(Fig. 1), will be derived in the configuration space

q = [qT
R,q

T
B]T = [ . . . , vi, wi, ϑi, ψi, . . . , vRa , wRa , vRb

, wRb
]T . (17)

The vector qR of dimension 4N (N = number of rotor shaft nodal points) was defined in (1)
and the sub-vector

qB = [vRa , wRa , vRb , wRb ]
T (18)

expresses lateral displacements of the rigid bearing rings Ra (left) and Rb (right) with respect
to frame. The matrices of the shaft element defined in equation (15) must be transformed
in the form

Xe = PT X(e) P , X(e) = M(e),B(e)
E ,B(e)

I ,G(e),K(e),C(e) , (19)
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where permutation matrix P corresponds to relation

q(e)
YZ = Pqe , qe = [vi, wi, ϑi, ψi, vi+1, wi+1, ϑi+1, ψi+1]T .

The structure of the all global rotor shaft matrices without disks and bearings is given by
following scheme

XR =
∑

e

diag[0,Xe,0] , XR = MR,B
(E)
R ,B(I)

R ,GR,KR,CR ∈ R4N,4N (20)

with block matrices Xe determined in (19).

The mass MD, gyroscopic ωBD and external damping BD matrices of the axisymmetric
rigid disk firmly linked with the rotor shaft in nodal point i can be derived using Lagrange’s
approach based on the kinetic energy ED and dissipation function RD. The mass, external
damping and gyroscopic matrices of the rotor shaft with disks (turbine and compressor
wheels, seal and trust rings) have structure

XR =
∑

e

diag[0,Xe,0]+
∑
D

XD , XR = MR,B
(E)
R ,GR , XD = MD,BD,GD , (21)

where Xe are the shaft FE matrices (19) and the disk matrices are localized on positions
corresponding to coupling shaft nodal points displacements.

Fig.3: Rotating floating ring bearing

In order to reduce the bearing friction, the high-speed turbocharger is supported on the
rotating floating ring bearings having the inner (I) and outer (O) oil films (Fig. 3). We
consider the rotor shaft rotation with constant angular velocity ω in the opposite direction
around X axis. Using Lagrange’s approach we derive, on condition lateral ring vibrations,
the mass matrix of the rotating floating ring bearings

MB = diag[ma,ma,mb,mb] , (22)
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where ma, mb are ring masses. The bearing forces F (I)
r , F (I)

t and F (O)
r , F (O)

t (see Fig. 3) are
based on the corresponding rotating coordinate system [4] rJ, tJ and rR, tR of the journal (J)
and ring (R).

In case of linear rotordynamics the bearing forces F (I)
r , F (I)

t and F (O)
r , F (O)

t are linearized
in the neighbourhood of the static equilibrium position. In case of the floating ring bearings
the linearized forces in the inertial coordinate system are

[
F
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Y

F
(I)
Z

]
=

[
F

(I)
0,Y

F
(I)
0,Z

]
−
[
kYY(ω) kYZ(ω)
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][
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]
−
[
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]
, (23)
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Y

F
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Z

]
=

[
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0,Y

F
(O)
0,Z

]
−
[
kYY(ω) kYZ(ω)
kZY(ω) kZZ(ω)

][
v̄R
w̄R

]
−
[
bYY(ω) bYZ(ω)
bZY(ω) bZZ(ω)

][
˙̄vR

˙̄wR

]
, (24)

where v̄J , w̄J and v̄R, w̄R are displacements of the journal and ring centres from the static
equilibrium position resulted from static load of the journals and bearing rings.

As a result of specific ring speed ratio RSR = ωR/ω [6] in steady-state conditions (con-
stant ω) the stiffness and damping matrices of the inner and outer oil-films in Eqs. (23)
and (24) depend on ω. We describe them as K(I)

x (ω), B(I)
x (ω) for inner oil-film and K(O)

x (ω),
B(O)

x (ω) for outer oil-film of the left (x = a) and right (x = b) bearings. The changes of
the bearing forces, relating to small displacements and velocities of the rotor from static
equilibrium position, can be expressed by the second and the third components on the right
side in Eqs. (23) and (24). They can be expressed in the matrix form

ΔfB = −KB(ω)
[
q̄R

q̄B

]
− BB(ω)

[
˙̄qR
˙̄qB

]
, (25)

where q̄R, q̄B are vectors of rotor shaft and bearing rings displacements from the static
equilibrium position. According to (23) and (24), the stiffness and damping matrices of the
two separated oil-films of both bearings are localized in global matrices according to vectors
q̄Jx

= [v̄Jx
, w̄Jx

]T, q̄Rx
= [v̄Rx

, w̄Rx
]T, x = a, b as follows

KB(ω) =

⎡
⎢⎢⎣

K(I)
a −K(I)

a

K(I)
b −K(I)

b

−K(I)
a K(I)

a + K(O)
a

−K(I)
b K(I)

b + K(O)
b

⎤
⎥⎥⎦
} q̄Ja

} q̄Jb

} q̄Ra

} q̄Rb

, BB(ω) ∼ KB(ω) . (26)

The linearized motion equations of the turbochargers (Fig. 1), according to (21), (22)
and (25), can be written as

[
MR 0
0 MB

] [
¨̄qR
¨̄qB

]
+
([

B(E)
R + B(I)

R − ωGR 0
0 0

]
+ BB(ω)

)[
˙̄qR
˙̄qB

]
+

+
([

KR − ωCR 0
0 0

]
+ KB(ω)

)[
q̄R

q̄B

]
=
[
fR(t)

0

]
,

(27)

where fR(t) is vector of the unbalance of disks (turbine and compressor wheels).
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4. Application

The homogenous motion equations (27) (for fR(t) = 0) was applied on eigenvalues calcu-
lation of the small automotive turbocharger with rotor mass 0.1 [kg]. The rotor discretized
into 13 nodes (Fig. 1) is supported on two short cylindrical floating ring bearings. The
eigenvalues λν are found by solving the eigenvalue problem

(A − λE)u = 0 (28)

in state space u = [ ˙̄q, q̄]T, where non-symmetric system matrix is

A =
[−M−1 B(ω) −M−1 K(ω)

E 0

]
(29)

and M, B(ω), K(ω) are global matrices of order n = 56 in the motion equations (27).
The bearing stiffness and damping coefficients were calculated for the concrete oil and geo-
metrical bearing parameters by means of bearing dimensionless stiffness κij and damping
βij coefficients [4], [6] using the Reynolds lubrication equation for radial cylindrical short
bearings with the non-cavitating oil-films.

The linearized mathematical model of the rotor has besides complex conjugate pairs
of eigenvalues also even number of real values representing nonoscillatory overdamping
modes. The Campbell diagram displayed at Fig. 4 expresses the dependence of the eigen-
frequencies (imaginary parts of the complex eigenvalues) of the turbocharger on rotor speed
n = 30ω/π [rpm]. The critical speeds nk [rpm], where the eigenfrequencies cuts the syn-
chronous excitation line, can be calculated as roots of the nonlinear equation

n =
30
π

Im{λν(n)} . (30)

The calculated critical speeds in the investigated rotor speed range n ∈ 〈20000, 240000〉 [rpm]
are given in Table 1.

Fig.4: Campbell diagram of the turbocharger



44 Zeman V. et al.: Dynamical Model and Eigenvalues of the Turbocharger

Critical speeds

order without strengthening with strengthening

f [Hz] n [rpm] f [Hz] n [rpm]

1 677.38 40643 712.94 42776 B

2 875.20 52512 889.71 53377 F

3 2239.38 134363 2483.76 149026 B

4 3241.25 194475 4865.54 291932 B

5 3637.61 218257 5436.85 326211 F

Tab.1: Critical speed of the rotor (B=backward, F=forward) without and
with strengthening of the shaft in area of the compressor wheel

5. Conclusion

The described method was applied to investigate the complex eigenvalues, stability and
critical speeds of the well-balanced concrete turbocharger rotor supported on two floating
ring bearings. The computer program in MATLAB code makes it possible to analyse an
influence of design and operation parameters of the turbochargers on these phenomenons.
The adjusted nonlinear mathematical model including nonlinear characteristics of the bea-
ring forces will be used for vibration analysis at the large journals and floating bearing rings
deflections.
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